Science, Philosophy, and Faith

In modern culture it is common to claim that science uses neutral, unbiased methods to discover objective facts, while religion is only the realm of personal, subjective values. In this worldview, science with its facts is the realm of the mind, and religion with only assumptions and values is the realm of the emotions. However, there is no such thing as an objective, value-free search for truth. Everyone works within some worldview, with its accompanying assumptions. Every system of thought, every worldview, is based on some ultimate principle that is accepted by faith (in contrast to accepting it because of convincing evidence). Most scientists accept the secular worldview, based on the principle of naturalistic materialism, which is accepted by faith, and all scientific data on origins are interpreted according to that principle. The religious worldview that accepts a literal, recent Creation is based on the principle that God has involved Himself in supernatural ways in the origin of the universe and of life and has communicated this to us, and this is accepted by faith in God and the Bible (Pearcey 2005).

The aim of this entire discussion is not to prove whether Creation or large-scale evolution is true. That is not a realistic goal for science or for religion. The aim is to compare a few important aspects of how each worldview deals with the evidence currently available to us, and how well these worldviews answer the most important questions about our existence and destiny.

The Origin of Life

Before there can be evolution there must be living organisms to evolve, so we will discuss the origin of life first. Darwin and his British colleagues thought that a cell is a bit of gel-like protoplasm surrounded by a membrane—a simple structure that could easily evolve. More recent scientific advances have demolished this view by revealing how complex a living cell is, thus making it more difficult to explain how the first life forms originated. Answers we give to that question will fall primarily into one of two categories: either life originated by itself, merely from the action of the laws of chemistry and physics (abiogenesis), or it was invented and made by an intelligent designer. Later in this chapter we will consider the possible combination of these two—evolution and intelligent design—working together.
Life is a unique and unlikely phenomenon. Many other things, such as rocks, minerals, crystals, water and other fluids, and snowflakes, will form spontaneously if the conditions are correct, in accordance with the laws of chemistry and physics. But life is very different. Life certainly depends on the existence of matter and on the laws of chemistry and physics, but matter and the laws that govern it are not sufficient to explain life’s origins or continued existence. The laws of chemistry and physics only provide a set of conditions that allow life to exist. They are like the ground upon which a house can be built. But the ground does not make a house, and the laws of nature do not make life. There is something beyond those laws that makes a house, and likewise there is something else that makes life. It is not possible to determine a set of conditions that are sufficient to produce life, because the essence of life consists of something unique and different from any of the raw materials. Life can be compared with the book you are reading. The book’s pages no doubt contain some chemicals that will form if the conditions are right. But the book would be meaningless without the one constituent that also defines life: information (see chapter 2).

Let us briefly return to the house analogy. The laws of nature produce iron, gypsum, copper, and the constituents of concrete, but they have no ability to know how to put those together to make a house. God made an exquisite set of laws of nature and uses those laws to operate His universe. But those exquisite laws will never know what a bedroom is for, or how to design one. That depends on an intelligent agent, one who can invent the concept of house and figure out how to design one so it is functional. A blueprint exists because someone invented it and put it down on paper.

The information that sustains life is conveyed by specific sequences of subunits within DNA, RNA, and proteins (Fig. 1)—directly comparable to human writing, which conveys information in sequences of letters, words, and sentences. The laws of chemistry and physics do not specify whether E will come before H, and likewise they do not specify the sequences of subunits in DNA or proteins. We know that human writing conveys information that someone organized, and it seems reasonable to infer the same for the information within DNA and proteins.

If life arose without a designer, where did the information so central to life come from? That is the challenge for abiogenesis. Some simple
biological molecules, such as amino acids, will form spontaneously if the conditions are right. However, amino acids are only like bricks, and bricks alone do not make a house. There must be instructions for arranging the bricks (and many other structures) into a functional house. Similarly, there must also be instructions on how to arrange the amino acids to make a great variety of functional proteins. The amino acid sequence in a protein

Figure 1—Left: The structure of DNA, with its pairs of bases (adenine \([A]\), guanine \([G]\), cytosine \([C]\), and thymine \([T]\)) between the two strands of the double helix. \(T\) always pairs with \(A\), and \(C\) always pairs with \(G\). Middle: A sample of messenger-RNA codons (codon = a sequence of three bases that codes for a specific amino acid, or indicates start or stop the construction of a protein). Note that uracil \([U]\) replaces \(T\) in RNA. Right: Sample of point mutations that change one base and result in a different amino acid. Lower: A portion of a representative protein, composed of a chain of amino acids.